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Administrivia

•P4A deadline: Tuesday
•Complete the feedback exercise by tonight
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ML makes mistakes



Mitigation strategies?



Collecting feedback



Updating Models

• Models are rarely static outside the lab

• Data drift, feedback loops, new features, new 
requirements

• We should consider when and how to update models
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Human in the loop



Design for failures/mistakes
• Human-AI interaction design (human in the loop):

• Guardrails

• Mistakes detection and correction

• Undoable actions

https://ckaestne.medium.com/safety-in-ml-enabled-systems-b5a5901933ac



System-wide pipeline



ML models as part of a system







Traditional vs. System-wide ML Pipeline
• Traditional

• Get labeled data

• Identify and extract features

• Split data into training and evaluation set

• Learn model from training data

• Evaluate model on evaluation data

• Repeat, revising features

• With production data

• Evaluate model on production data; monitor

• Select production data for retraining

• Update model regularly



Outline

• Why ML/AI projects fail?
• Data quality
• Fairness issues

• What’s wrong with the model-centric pipeline?
• Are there any new challenges?
• What is ML Ops?



What (real) challenges are there in 
building and deploying systems with ML?



The road to production: a paradigm 
shift



T-shaped professionals



What makes software with ML 
challenging?
• Lack of specification (unreliability, uncertain output, 

mistakes)?



Lack of specification



What makes software with ML 
challenging?
• Lack of specification (unreliability)?

• Complexity?



Complexity in Engineering Systems

• Automobile ~30K parts

• Airplane ~3M parts

• MS Office ~40M LOC

• Debian    ~400M LOC



What makes software with ML 
challenging?
• Lack of specification (unreliability)?

• Complexity?

• Big Data?



Big Data?



What makes software with ML challenging?

• Lack of specification (unreliability)?

• Complexity?

• Big Data?

• Interaction with the environment?



Interaction with the environment: safety

Safety risks?
How can you mitigate these risks?



Interaction with the environment: safety



Interaction with the environment: 
feedback loops

ML Model: Use historical arrest records to predict crime rates by 
neighborhoods
Used for predictive policing: Decide where to allocate police patrol



Feedback loops



Feedback loops



What makes software with ML 
challenging?
• Lack of specification (unreliability)

• Complexity

• Big Data

• Interaction with the environment



What makes software (systems) with 
ML challenging?
• It’s not all new

• Safe software with unreliable components

• Cyber-physical systems

• Non-ML big data systems, cloud systems

• "Good enough" and "fit for purpose" not "correct"

• We routinely build such systems

• ML intensifies our challenges



Beware of the Automation Paradox

The more efficient the automated system, the more crucial the 
human contribution of the operators.
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ML Component Tradeoffs



Qualities of ML Components
• Accuracy

• Capabilities (e.g. classification, recommendation, clustering…)

• Amount of training data needed

• Inference latency

• Learning latency; incremental learning?

• Model size

• Explainable? Robust?

• …



Understanding Capabilities and Tradeoffs

• Deep Neural Networks • Decision Trees
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Trade-offs: Cost vs Accuracy
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"We evaluated some of the new methods offline but the additional 
accuracy gains that we measured did not seem to justify the 
engineering effort needed to bring them into a production 
environment.”



Trade-offs: Accuracy vs Interpretability
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System Architecture Tradeoffs
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Activity

Pick one scenario based on where you are seating

• Transcription Services   (front rows)
• Parking Sensor (middle rows)
• Surge Prediction (back rows)

Discuss in groups these questions:

• Where should the model be deployed? e.g.,  in the 
cloud, on-premises, on directly on the devices?

• What are the key factors influencing this choice 
(e.g., latency, computational power, data privacy)?



Where should the model live?
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Laptop

Local 
Server

Cloud

Academic 
Transcriptions



Where should the model live?
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Car

Phone

Cloud

Surge 
Prediction



Where should the model live?
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Pod

Gateway

Cloud

Car 
Detector



Typical Designs
• Static intelligence in the product

• difficult to update
• good execution latency
• cheap operation
• offline operation
• no telemetry to evaluate and improve

• Client-side intelligence
• updates costly/slow, out of sync problems
• complexity in clients
• offline operation, low execution latency
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Considerations for deployment
• How much data is needed as input for the model?

• How much output data is produced by the model?

• How fast/energy consuming is model execution?

• What latency is needed for the application?

• How big is the model? How often does it need to be updated?

• Cost of operating the model? (distribution + execution)

• Opportunities for telemetry?

• What happens if users are offline?



MLOps



MLOps

• Many vague buzzwords, often not clearly defined
• MLOps: Collaboration and communication 

between data scientists and operators, e.g.,
• Automate model deployment
• Model training and versioning infrastructure
• Model deployment and monitoring



MLOps Overview

• Integrate ML artifacts into software release process, unify 
process (i.e., DevOps extension)

• Automated data and model validation (continuous 
deployment)

• Continuous deployment for ML models: from 
experimenting in notebooks to quick feedback in 
production

• Versioning of models and datasets 
• Monitoring in production



MLOps Tools (examples)

• Model versioning and metadata: MLFlow, Neptune, ModelDB, 
WandB, ...

• Model monitoring: Fiddler, Hydrosphere
• Data pipeline automation and workflows: DVC, Kubeflow, Airflow
• Model packaging and deployment: BentoML, Cortex
• Distributed learning and deployment: Dask, Ray, ...
• Feature store: Feast, Tecton
• Integrated platforms: Sagemaker, Valohai, ...
• Data validation: Cerberus, Great Expectations, …

Long list: https://github.com/kelvins/awesome-mlops



Process for AI-Enabled 
Systems



Data Science is Iterative and 
Exploratory
• Science mindset: start with rough goal, no clear 

specification, unclear whether possible
• Heuristics and experience to guide the process
• Try and error, refine iteratively, hypothesis testing
• Go back to data collection and cleaning if needed, revise 

goals



Different Trajectories

Martínez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories." IEEE Transactions on Knowledge and Data Engineering (2019)

● Goal exploration: finding business goals which 
can be achieved in a data-driven way

● Data source exploration: discovering new and 
valuable sources of data

● Data value exploration: finding out what value 
might be extracted from the data

● Result exploration: relating data science results 
to the business goals

● Narrative exploration: extracting valuable stories 
(e.g., visual or textual) from the data

● Product exploration: finding ways to turn the 
value extracted from the data into a service or 
app that delivers something new and valuable to 
users and customers.

● Data acquisition: obtaining or creating relevant 
data, for example by installing sensors or apps



Trajectories

• Not every project follows the same development process, 
e.g.
• Small ML addition: Product first, add ML feature later
• Research only: Explore feasibility before thinking about a 

product
• Data science first: Model as central component of potential 

product, build system around it
• Different focus on system requirements, qualities, and 

upfront planning
• Manage interdisciplinary teams and different expectations



Computational Notebooks

• Origins in "literate programming", 
interleaving text and code, treating 
programs as literature (Knuth 84)

• First notebook in Wolfram 
Mathematica 1.0 in 1988

• Document with text and code cells, 
showing execution results under cells

• Code of cells is executed, per cell, in a 
kernel

• Many notebook implementations and 
supported languages, Python + 
Jupyter currently most popular



Notebooks Support Iteration and 
Exploration
• Quick feedback, similar to REPL
• Visual feedback including figures and tables
• Incremental computation: running individual cells
• Quick and easy: copy paste, no abstraction needed
• Easy to share: document includes text, code, and 

results



Brief Discussion: Notebook Limitations 
and Drawbacks?



Process Activities for ML?
• Testing script

• Existing model: Automatically evaluate model on labeled training set; multiple 
separate evaluation sets possible, e.g., for slicing, regressions

• Training model: Automatically train and evaluate model, possibly using 
cross-validation; many ML libraries provide built-in support

• Report accuracy, recall, etc. in console output or log files
• Deploy learning and evaluation tasks to cloud services
• Optionally: Fail test below bound (e.g., accuracy <.9; accuracy < last accuracy)

• Version control test data, model and test scripts, ideally also learning data 
and learning code (feature extraction, modeling, ...)

• Continuous integration tool can trigger test script and parse output, plot for 
comparisons (e.g., similar to performance tests)

• Optionally: Continuous deployment to production server



Machine Learning in Production

Want to know more about it?

https://mlip-cmu.github.io/

https://mlip-cmu.github.io/


Summary

• Production AI-enabled systems require a whole system 
perspective beyond just the model or the pipeline

• Machine learning brings new challenges and intensifies 
old ones

• Building ML systems need team efforts

• Collaborative culture among Software Engineers, Data 
Scientists, Stakeholders is necessary


