
Software Engineering for
ML Applications (II)

17-313 Fall 2024
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io/

Administrivia

•P4A deadline: Tuesday
•Complete the feedback exercise by tonight

2

ML makes mistakes

Mitigation strategies?

Collecting feedback

Updating Models

• Models are rarely static outside the lab

• Data drift, feedback loops, new features, new
requirements

• We should consider when and how to update models

7

Human in the loop

Design for failures/mistakes
• Human-AI interaction design (human in the loop):

• Guardrails

• Mistakes detection and correction

• Undoable actions

https://ckaestne.medium.com/safety-in-ml-enabled-systems-b5a5901933ac

System-wide pipeline

ML models as part of a system

Traditional vs. System-wide ML Pipeline
• Traditional

• Get labeled data

• Identify and extract features

• Split data into training and evaluation set

• Learn model from training data

• Evaluate model on evaluation data

• Repeat, revising features

• With production data

• Evaluate model on production data; monitor

• Select production data for retraining

• Update model regularly

Outline

• Why ML/AI projects fail?
• Data quality
• Fairness issues

• What’s wrong with the model-centric pipeline?
• Are there any new challenges?
• What is ML Ops?

What (real) challenges are there in
building and deploying systems with ML?

The road to production: a paradigm
shift

T-shaped professionals

What makes software with ML
challenging?
• Lack of specification (unreliability, uncertain output,

mistakes)?

Lack of specification

What makes software with ML
challenging?
• Lack of specification (unreliability)?

• Complexity?

Complexity in Engineering Systems

• Automobile ~30K parts

• Airplane ~3M parts

• MS Office ~40M LOC

• Debian ~400M LOC

What makes software with ML
challenging?
• Lack of specification (unreliability)?

• Complexity?

• Big Data?

Big Data?

What makes software with ML challenging?

• Lack of specification (unreliability)?

• Complexity?

• Big Data?

• Interaction with the environment?

Interaction with the environment: safety

Safety risks?
How can you mitigate these risks?

Interaction with the environment: safety

Interaction with the environment:
feedback loops

ML Model: Use historical arrest records to predict crime rates by
neighborhoods
Used for predictive policing: Decide where to allocate police patrol

Feedback loops

Feedback loops

What makes software with ML
challenging?
• Lack of specification (unreliability)

• Complexity

• Big Data

• Interaction with the environment

What makes software (systems) with
ML challenging?
• It’s not all new

• Safe software with unreliable components

• Cyber-physical systems

• Non-ML big data systems, cloud systems

• "Good enough" and "fit for purpose" not "correct"

• We routinely build such systems

• ML intensifies our challenges

Beware of the Automation Paradox

The more efficient the automated system, the more crucial the
human contribution of the operators.

34

ML Component Tradeoffs

Qualities of ML Components
• Accuracy

• Capabilities (e.g. classification, recommendation, clustering…)

• Amount of training data needed

• Inference latency

• Learning latency; incremental learning?

• Model size

• Explainable? Robust?

• …

Understanding Capabilities and Tradeoffs

• Deep Neural Networks • Decision Trees

3
6

Trade-offs: Cost vs Accuracy

3
7

"We evaluated some of the new methods offline but the additional
accuracy gains that we measured did not seem to justify the
engineering effort needed to bring them into a production
environment.”

Trade-offs: Accuracy vs Interpretability

3
8

System Architecture Tradeoffs

39

Activity

Pick one scenario based on where you are seating

• Transcription Services (front rows)
• Parking Sensor (middle rows)
• Surge Prediction (back rows)

Discuss in groups these questions:

• Where should the model be deployed? e.g., in the
cloud, on-premises, on directly on the devices?

• What are the key factors influencing this choice
(e.g., latency, computational power, data privacy)?

Where should the model live?

41

Laptop

Local
Server

Cloud

Academic
Transcriptions

Where should the model live?

42

Car

Phone

Cloud

Surge
Prediction

Where should the model live?

43

Pod

Gateway

Cloud

Car
Detector

Typical Designs
• Static intelligence in the product

• difficult to update
• good execution latency
• cheap operation
• offline operation
• no telemetry to evaluate and improve

• Client-side intelligence
• updates costly/slow, out of sync problems
• complexity in clients
• offline operation, low execution latency

44

Considerations for deployment
• How much data is needed as input for the model?

• How much output data is produced by the model?

• How fast/energy consuming is model execution?

• What latency is needed for the application?

• How big is the model? How often does it need to be updated?

• Cost of operating the model? (distribution + execution)

• Opportunities for telemetry?

• What happens if users are offline?

MLOps

MLOps

• Many vague buzzwords, often not clearly defined
• MLOps: Collaboration and communication

between data scientists and operators, e.g.,
• Automate model deployment
• Model training and versioning infrastructure
• Model deployment and monitoring

MLOps Overview

• Integrate ML artifacts into software release process, unify
process (i.e., DevOps extension)

• Automated data and model validation (continuous
deployment)

• Continuous deployment for ML models: from
experimenting in notebooks to quick feedback in
production

• Versioning of models and datasets
• Monitoring in production

MLOps Tools (examples)

• Model versioning and metadata: MLFlow, Neptune, ModelDB,
WandB, ...

• Model monitoring: Fiddler, Hydrosphere
• Data pipeline automation and workflows: DVC, Kubeflow, Airflow
• Model packaging and deployment: BentoML, Cortex
• Distributed learning and deployment: Dask, Ray, ...
• Feature store: Feast, Tecton
• Integrated platforms: Sagemaker, Valohai, ...
• Data validation: Cerberus, Great Expectations, …

Long list: https://github.com/kelvins/awesome-mlops

Process for AI-Enabled
Systems

Data Science is Iterative and
Exploratory
• Science mindset: start with rough goal, no clear

specification, unclear whether possible
• Heuristics and experience to guide the process
• Try and error, refine iteratively, hypothesis testing
• Go back to data collection and cleaning if needed, revise

goals

Different Trajectories

Martínez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories." IEEE Transactions on Knowledge and Data Engineering (2019)

● Goal exploration: finding business goals which
can be achieved in a data-driven way

● Data source exploration: discovering new and
valuable sources of data

● Data value exploration: finding out what value
might be extracted from the data

● Result exploration: relating data science results
to the business goals

● Narrative exploration: extracting valuable stories
(e.g., visual or textual) from the data

● Product exploration: finding ways to turn the
value extracted from the data into a service or
app that delivers something new and valuable to
users and customers.

● Data acquisition: obtaining or creating relevant
data, for example by installing sensors or apps

Trajectories

• Not every project follows the same development process,
e.g.
• Small ML addition: Product first, add ML feature later
• Research only: Explore feasibility before thinking about a

product
• Data science first: Model as central component of potential

product, build system around it
• Different focus on system requirements, qualities, and

upfront planning
• Manage interdisciplinary teams and different expectations

Computational Notebooks

• Origins in "literate programming",
interleaving text and code, treating
programs as literature (Knuth 84)

• First notebook in Wolfram
Mathematica 1.0 in 1988

• Document with text and code cells,
showing execution results under cells

• Code of cells is executed, per cell, in a
kernel

• Many notebook implementations and
supported languages, Python +
Jupyter currently most popular

Notebooks Support Iteration and
Exploration
• Quick feedback, similar to REPL
• Visual feedback including figures and tables
• Incremental computation: running individual cells
• Quick and easy: copy paste, no abstraction needed
• Easy to share: document includes text, code, and

results

Brief Discussion: Notebook Limitations
and Drawbacks?

Process Activities for ML?
• Testing script

• Existing model: Automatically evaluate model on labeled training set; multiple
separate evaluation sets possible, e.g., for slicing, regressions

• Training model: Automatically train and evaluate model, possibly using
cross-validation; many ML libraries provide built-in support

• Report accuracy, recall, etc. in console output or log files
• Deploy learning and evaluation tasks to cloud services
• Optionally: Fail test below bound (e.g., accuracy <.9; accuracy < last accuracy)

• Version control test data, model and test scripts, ideally also learning data
and learning code (feature extraction, modeling, ...)

• Continuous integration tool can trigger test script and parse output, plot for
comparisons (e.g., similar to performance tests)

• Optionally: Continuous deployment to production server

Machine Learning in Production

Want to know more about it?

https://mlip-cmu.github.io/

https://mlip-cmu.github.io/

Summary

• Production AI-enabled systems require a whole system
perspective beyond just the model or the pipeline

• Machine learning brings new challenges and intensifies
old ones

• Building ML systems need team efforts

• Collaborative culture among Software Engineers, Data
Scientists, Stakeholders is necessary

